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SUMMARY 

A comparative study of seven discretization schemes for the equations describing convection-diffusion 
transport phenomena is presented. The (differencing) schemes considered are the conventional central- and 
upwind-difference schemes, together with the Leonard,' Leonard upwind' and Leonard super upwind 
difference' schemes. Also tested are the so called locally exact difference scheme2 and the quadratic-upstream 
difference ~ c h e m e . ~ . ~  In multidimensional problems errors arise from 'false-diffusion' and function 
approximations. It is asserted that false diffusion is essentially a multidimensional source of error. No mesh 
constraints are associated with errors in function approximation and discretization. Hence errors associated 
with discretization only may be investigated via one-dimensional problems. Thus, although the above 
schemes have been tested for one- and two-dimensional flows with sources, only the former are presented here. 
For 1D flows, the Leonard super upwind difference scheme and the locally exact scheme are shown to be far 
superior in accuracy to the others a t  all Peclet numbers and for most source distributions, for the test cases 
considered. Furthermore, the latter is shown to be considerably cheaper in computational terms than the 
former. The stability of the schemes and their C P U  time requirements are also discussed. 

K E Y  WORDS Convection-Diffusion Differencing Schemes Discretization Errors False Diffusion 
Upwind Scheme Higher Order Schemes Accuracy Stability Computational Cost 

INTRODUCTION 

The simulation of fluid-flow and heat/mass-transfer phenomena requires the numerical solution of 
the Navier-Stokes, energy- and species-conservation equations. These equations involve terms des- 
cribing the time dependence, convection, diffusion and any sources present. The numerical solu- 
tions involve the use of interpolation assumptions, for the variation of the fluid properties and their 
gradients between discrete points on a computational 'grid' that covers the domain of interest. 
Unless very unwisely done, the interpolation assumptions will not affect the final solution, 
provided that sufficiently fine grids are used. They do, however, affect the solution when coarse 
grids are used; this being particularly so for the interpolation of the convection term. For multi- 
dimensional, multi-phase flow phenomena, involving 2 and 3 space dimensions and two or more 
sets of  equation^,^-^ the power of even present day computer capacity and speed generally proves 
to be the limiting factor in the use of very fine grids. Therefore, interpolation schemes for the 
convection terms are required that are sufficiently accurate to permit the performance of complex 
calculations within presently available computing resources. Computational fluid mechanics has 
recently experienced several controversies that have, regrettably, delayed its progress considerably. 
Most of the controversies arose because of the failure to inject physical considerations into the 
abstract mathematical laws and manipulations." One of the main controversies relates to the so- 
called 'false diffusion', that is commonly attributed in the literature to the order of accuracy of the 
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differencing scheme used. However, the central-difference scheme has second-order accuracy and 
yet for large Peclet numbers performs less satisfactorily than the upwind scheme which is only first- 
order accurate. Of course, the upwind scheme overestimates diffusion at  large values of Peclet 
number but this is also true for all other schemes. False diffusion is not governed by the order of the 
scheme; for steady-state, uniform flow in a co-ordinate direction the first-order upwind scheme has 
no false diffusion! * False diffusion exists only in multi-dimensional phenomena and arises because 
of the common practice of treating the flow across each control-cell face as locally one- 
dimensional. Therefore schemes that would give less false diffusion should take account of the local 
multi-dimensional nature of the flow. Such schemes e ~ i s t ~ , ~  but it is not the purpose of this work to 
test them at this time. The true merit of the higher-order schemes is that they approximate better 
the fluid-property space variation, which is in reality non-linear; so they may be more accurate for 
relatively coarse grids. The purpose of this work is to test several of the available schemes with a 
view to evaluating their relative accuracy vis-d-vis their generality, stability and computer 
requirements. 

The schemes tested are: the central-difference scheme (CDS); the upwind-difference scheme 
(UDS); the more complex Leonard, Leonard upwind and Leonard super upwind difference 
schemes (LDS, LUDS, LSUDS OR LSU); the locally exact difference scheme (LEDS); and the 
quadratic upstream difference scheme (QUDS) of Leonard3 as modified by Pollard and Siu." 

In Section 2, the general governing equations encountered in fluid-flow problems are outlined. 
In Section 3,  the test problems are introduced, together with their analytic solution. Section 4 
outlines the finite-difference equations using the control-volume formulation." Section 5 outlines 
the nature of the influence coefficients and the restrictions imposed upon the convergence of the 
schemes. Section 6 briefly outlines the solution procedure. Section 7 introduces the particular test 
cases used. Section 8 presents the results for the test cases under consideration. Section 9 discusses 
the results, performance of the schemes and their consequences. Finally, Section 10 presents the 
concluding remarks of the present study. Since the LEDS and LSUDS may not be familiar to some 
readers, they are discussed in some detail, and their derivations are given in Appendices I and 11. 

2. THE TRANSPORT EQUATIONS 

Fluid dynamics and heat/mass transfer problems of engineering interest are modelled by the 
Navier-Stokes and conservation equations. A major convenience for the numerical formulation is 
provided by the recognition that these equations have a common form." Thus the general steady- 
state convection-diffusion equation may be written as 

axi ( 2i) a 
-(puiq5)=- r- + S  axi 

where the dependent variable is denoted by 4. The mass flow rate pui appearing in equation (la) 
must satisfy an additional equation, the continuity equation for the flow field, written for steady 
flows as 

d 
-(puJ = 0 
axi 

The diffusion coefficient represents fluid properties such as conductivity or viscosity, and ui 
denotes the velocity in the xi-direction with p being the density. The term on the left-hand side of 
equation (1) is the convection term, which represents the flux of 4 convected by the mass flow rate 
pui. The first term on the right-hand side is the diffusion term and S represents the source term, 
which could also include any other terms that are not conveniently represented by convection and 
diffusion terms of the above form. The dependent variable q5 stands for a variety of physical 
quantities, such as velocity components, enthalpy, mass fraction etc.; and, depending on 4, the Ts 
and Ss are appropriately expressed. 
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E = d x 3  + b'X2 + C'X 

Z = l - a ' - b - c '  

b = b/(2P) + a/(P2) 
C' = c/P + b/(P2) + 2a/(P3), 

\ 

a' = a/(3P) 
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3. THE TEST PROBLEM 

In the introduction we asserted that the order of the discretization scheme only influences the 
accuracy of the approximation method. This means that the effectiveness of such schemes can be 
assessed by simple linear problems in one space dimension. 

The one-dimensional problem considered has the form 

where p, u and r are constant without loss of generality; S(x) is a source term and the boundary 
conditions are of the form 

4(0) = 0; O(1) = 1 (2b) 
The Peclet number for the flow is represented by P( = pu/T). For the purpose of the tests a 
quadratic source term S(x) = axz + bx + c was assumed, where a, b and c are constants. The 
analytic solution Cp(x) for the problem depicted by equation (2a), which is characterized by a 
viscous boundary layer of thickness 1/P, is 

Z[exp(Px) - 11 
@(x) = + E  

[exp(P) - 11 

4. FINITE-DIFFERENCE APPROXIMATIONS 

For a uniform grid of length Ax, a simple central-difference approximation for the diffusion term is 
(Figure 1) 

(4) 
( $)p = 4 E  - 24P _____ + Ow 

Ax2 

which is in general a good approximation, since it is 'third order c~nsistent ' . '~ However, it is not the 
diffusion term approximation that poses the problem, but rather the convection term. In the 
current contribution we examine seven distinct approximations of the convection term to evaluate 
their accuracy and practicability for implementation. 

The schemes are (see Figure 1 for definitions of points E, W, P, EE etc.): 

(i) the central-difference scheme (CDS) 

(fS),=W 

Figure 1. Control volume representation 
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(ii) the upwind-difference scheme (UDS) 

4 P  - 4 w  

(iii) the Leonard difference scheme (LDS) 

i 
www I 

4 E -  4W 4 E -  3 4 P -  3 4 W -  4 W W  

U > O @  

u > o , ( g )  = 1 1 4 P  - W W  + 9 4 W W  - 2 4  

=--- 
2Ax ~ A X  

c b E - # W  4 E E - 3 4 E + 3 d h ' - ( b W  

2Ax ~ A X  

(iv) the Leonard upwind difference scheme (LUDS) 

P 6Ax 

2 4 E E E  - 9 4 E E  + 8 d E  - l # P  u < o , ( g )  P = 6Ax 

(v) the Leonard super upwind difference scheme (LSUDS) 

(PE - 4 W  4 b E -  3 4 P  + 3 4 W -  CbWW 

2Ax 6Ax 

(vi) the locally exact difference scheme (LEDS) 

Table I. Truncation errors for the differencing schemes, for S(x) = 0 

(7) 

Derivatives itemized by equation 
4 5 6 I 8 9 10 11 

Truncation 
error 4;" 4"I 4" qbiv 4'," 4: 

Principal 
part Ax2 Ax2 Ax Ax3 Ax3 (42. - 3)Ax3 Ax3 

Scheme CDS CDS UDS LDS LUDS LSUDS LEDS QUDS 
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(vii) the quadratic upstream difference scheme (QUDS) at the east cell-face, 

u > 0, 4 e  = % 4 P  + 4 E )  - i ( 4 w  - 2 4 P  + 4 i )  
< 0, 4, = a 4 P  + 4 L )  - 8 4 k E  - 24% + 4 P )  

The truncation errors for these discretization schemes are tabulated in Table I when S(u) = 0. 

5. METHOD O F  FORMULATION AND INFLUENCE COEFFIClENTS 

The general equation (1) is integrated over the control volume in Figure 1, with P as the central 
node and E, W, its neighbours. The corresponding faces of the control volume are denoted by e and 
w. The above notation is conventional.",'3 

The finite-difference equation is represented by 

J ,Ae  - JwAw + TAX = 0 (12) 
over the control volume shown in Figure 1, where Ax x 1 x 1 is its volume and S i s  the average 
source term within the control volume. A, are the cell-face areas. 

It is to be noted that the implied conservatism of the differencing schemes is a strong 
desideratum. Substitution of the various convection derivatives (i.e. expressions (5)-( 1 I ) )  and the 
diffusion derivative (expression (4)) in equation (12) leads to the final discretized equation which 
has the form 

'P$P = Canh4bnh f (13) 
where the subscript nb denotes the neighbours of the grid point P, and h denotes contributions 
from source terms. On defining the mesh Peclet number by 

where 
Pi = C J D ,  = puiAx/r 

Ci = pi; Di = T/Ax 
one can express the influence coefficients a, in a simple and more meaningful way,'' as shown in 
Table 11, where [cl, c.21 denotes the maximum of the variables c l  and c2, and subscript u denotes 
'u pstreams'. 

The main points to be noted in Table I1 are (a) the CDS influence coefficients become negative if 
C > 20 ,  and this would in turn lead to oscillatory and non-convergent solution." One way of 
overcoming this problem is to use finer grids, but in practice this is not always feasible owing to 
high costs; (b) the UDS influence coefficients are always greater than zero, and predict physically 
plausible solutions at all Peclet numbers; (c) the LDS has two distinct types of influence coefficients 
but, since the effect of the downstream coefficient is swamped, the restriction on this scheme is 

Table TI. Influence coefficients 

w u w  
Scheme a: a :: aece  
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C > 3 0 ,  the violation of which will lead to oscillatory solutions. In general, however, since all 
contributions lying outside the immediate neighbours are ‘dumped’ in the source term, the scheme 
is computationally viable; (d) the LUDS goes one step further by including a further downstream 
contribution, thus needing modified representations close to the boundary; (e) the LSUDS is a 
combination of the LDS and LUDS, where the weighting factor 2 is evaluated from a knowledge of 
the analytic solution. Thus the influence coefficients never become negative; but we do need to 
evaluate a series of exponential functions, which at times is expensive; (f) the LEDS, termed as 
‘smart upwind method’, is exact for one-dimensional problems with zero source; (g) finally the 
QUDS of Leonard,12 does suffer from convergence problems, as will be shown below. However 
one way of overcoming the convergence problems is to introduce ‘pseudo-source’ terms such as 
those by Han and Humphrey.14 Then one needs to store values at previous iterations, which is 
not efficient for large practical simulation problems. 

6. SOLUTION PROCEDURE 

The set of linear algebraic equations (13) was solved using what is known as the Thomas 
algorithm”, properly modified for the non-symmetric-banded cases. 

7. ONE-DIMENSIONAL TEST CASES 

The finite-difference schemes were tested over a wide range of Peclet numbers for eight test cases 
with zero, linear and quadratic source terms. The number of nodes, N ,  ranged from 5-100 in steps 
of 5 for all test cases. Table TI1 presents a summary of the cases considered. 

The ranges of Peclet numbers, P,  and mesh Peclet numbers, P,, studied were from 1-105 and 0.2- 
lo3, respectively, for all cases. The presented sample results for simplicity refer to Peclet numbers 
and mesh Peclet numbers from 1-100 and 1-50, respectively, since the behaviour for the higher 
Peclet number cases is the same. As seen in Table 111, the following one-dimensional convection- 
diffusion situations were considered. Test case 1, was the standard ‘no source’ situation, whereas 
test case 2 was one with a constant source term. Test cases 3 and 4 had linear source terms with 
positive and negative gradients, respectively. Test cases 5-8 all had quadratic source terms, with 
different constants a, b and c. 

Table 111. One-dimensional test cases considered 

Test Peclet number Range of mesh Number of Source term 
case P = p u p -  Peclet number nodes S ( 4  

1 1-105 
2 1-105 
3 1-105 
4 1-105 
5 1-105 
6 1-105 
7 1-105 
8 1-105 

0.2-1 03 
0.2- 1 03 
0.2-103 
0.2-103 
0.2-103 
0.2-103 
0.2- 103 
0.2-103 

5-100 
5-100 
5- 100 
5-100 
5-100 
5-100 
5-100 
5- 100 

0 
50 
X 

-X 
X Z - X - 1  

- x Z + x - l  
- -x2 -x+1  
X Z + . Y +  1 
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EAS 1 CDS UDS 
MAX- ERROR. P 10.509 0.091 
ERROR NORflma 10.767 0.091 
FLUX A T  X = l n  - ?.5001- 13.50b 6.612 

8. PRESENTATION OF RESULTS 

The main results are presented in Table IV and Figures 2-14. Table I V  summarizes the results for 
each scheme under consideration, for P = 20. 

In all Figures presented, the accompanying table summarizes the important characteristics 
such as maximum error, evaluated as max(/cD, - 4,I/ONj, the error norm evaluated by (c(/cDi - (oi/)2j'/2 and finally, the predicted flux at the outflow boundary (aN), evaluated by 

LUD I LDS LSU LED 
0,053 l0.073 0. 0. 
0.053 10.231 0. 0. 
- 6.9751- 9,870 - 7.500 -7050C 

c 

UI 
-J 

4 

IY 
4 > 

I a 

m 
r( 

c 

0 X-AXIS 1 

Figure 2. Analytic solution of the one-dimensional, zero source problem for P = 0, 1 ,  5, 10 and 50 

SOLUTION. FOR- CONUECTJON- DIFFUSION- EQUATION, R R  R P  , i z l t p n ,  I SOLUTION. FOR- CONUECTJON- DIFFUSION- EQUATION, R R  R P  , i z l t p n ,  I 

0 E M  
9 CDS 
0 UDS 
A LUD 
W LDS 

4 LSU 
X L E D  

N =  5 

P = 10.0 
A = 0. 
B =  0. 

c = 0. 

DISTANCE 

Figure 3. Numerical solution for zero source 



N =  5 
P = 10.0 

0 
D I STANCE 

1 

A =  0. 
B = 100.0 

Figure 4. Numerical solution for linear, positive gradient, source 

DISTANCE 

Figure 5. Numerical solution for linear, negative gradient, source 



EAS 
MAX- ERROR. II ~1 

ERROR NORM.. 

1 
DISTANCE 

CDS UDS LUD LDS LSU L E D  ~ 0 EAS 
0.146 0.157 0.013 0.014 0. 0.117 4 CDS 
Oa2L6 0.187 0.016 0.075 00011 0~140 ~ 0 UDS 

Figure 6. Numerical solution for quadratic, positive gradient, source 

FLUX AT X = l n  -Lo216 -6.300 -2,870 -6.082 -4.383 -4.245 -3.217. a LUD 

P 

EAS 1 CDS 
MAX- €RRORe 0 0 /0.634 
ERROR NORM.. 13.734 

D I STANCE 

UDS LUD LDS LSU LED 0 EAS 
0.009 0.010 0.102 0.001 0. CDS 
0.013 00010 0.115 On000 0.013 0 UDS 

N =  10 
P = 5000 

A = -100. 
B = 0. 

c = loo.( 

FLUX AT X = l m  -13n011-59o33 -12~80 -12.82 -190L9 -13.01 -13.14 

~ O L U ~ l O N -  FgR. ~ O ~ ~ € ~ ~ ~ ~ ~ -  RIFEUSION. E Q U A T J ~ N O ~ P  P . O  P P P P P P P P P ~ P P B  

Figure 7. Numerical solution for quadratic, negative gradient, sourcc 

LUD 
w LDS 

0 LSU 

X LED . 

A 



EAS CDS 
flAX- ERROR, 0.780 

X LED 
N = I 0  

P = 100.0 

A = 100.0 

E = 100.0 

c = -100. 
WURCEs I/ 

:F -1wd? 

UDS LUD LDS LSU LED . 0 EAS 
0,019 On005 0.130 0- O n 0 0 9 -  4 CDS 

DISTANCE 

Figure 8. Numerical solution for large sources, details on graph 

ERROR NORR.. 10.366 0.022 0.006 0.37L 0.000 0.015 . UDS 

0 
D I STANCE 

FLUX AT X=ln -15.35-119~8~15~01-15.2L-23.29-25.35-15.21 

1 

LUD A 

0 EAS 
4 CDS 
17 UDS 
A LUD 
w LDS 
0 LSU 
x LED 
N =  5 
P = 10,o 

A = -100% 

E = 100,O 
C =  0 ,  

EAS 
IIAX- ERROR. 
ERROR NORM.. 
FLUX AT X = l o  -5,023 

SOURCE. 
2L.O 

CDS UDS LUD I LDS LSU LED 
0,342 0.072 0.038 10.056 0.010 0.031 
0.490 0.092 0,OLI 10.1L9 0.015 0,048 
-8t1'100 -40395 -L.6SLl-6.532 -L.994 -L.98: 

Figure 9. Numerical solution for large sources, details on graph 
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1 C D S  
2 UDS 
3 QUDS 
4 L D S  
5 LUDS 
6 L E D S  
7 Lsms 

3 

4 

w 

10' I oz I 0 4  io" 

P 

Figure 10. Plot of maximum error versus Peclet number for N = 10 

- ( 4 N -  - 44,,,- + 3dN)/ (2Ax) ,  for the finite-difference schemes, and by - (ZPeP)/(ep - 1) + 
3u'x2 + b'x + c' for the exact solution. 

Figure 2 represents the analytic behaviour of I$ for several Peclet numbers for the cases with zero 
source. 

Figure 3 compares the solutions obtained by the various schemes for the test case with zero 
source against the analytic solution. 

Figures 4 and 5 compare the results of the various schemes for the cases with a linear source 
term with positive and negative gradients, respectively. 

Figures 6 and 7 compare the results of the various schemes for the cases with a quadratic source 
term with positive and negative gradients, respectively. 

1 CDS 
2 UCS 
3 QUDS 
4 L D S  
5 LUDS 
6 L E D S  
7 L S U D S  

X a z 
& 

0 

N 
Figure 1 I .  Plot of maximum error versus number of nodes for S(x) = x2 + x + 1 
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1 CDS 
2 UDS 
3 QUDS 
4 LDS 
5 LUDS 
6 LEDS 
7 LSUDS 

1 

2 

Nipb, N=10(!0)100, P=5O 

Figure 12. Pkit of error norm versus N/P112 for P = 50 and N ranging from 1 to 100 in steps of 10 

Figures 8 and 9 compares the performance of the schemes for cases with large source terms, 
generated by the expressions for test cases 5-8, in Table 111. 

Figures 10 to 13 present typical maximum error profiles as functions of the number of nodal 
points used, for all schemes tested; and Figure 14 presents the computational requirements in 
terms of CPU seconds on the Prime series 750 computer. 

i 

1'4 
N/& P = 1-SO.000, N=lo 

Figure 13. Plot of error norm versus NIP''' for N = 10 and P ranging from 1 to 50,000 

1 CDS 
2 UDS 
3 QUDS 
4 LDS 
5 LIJDS 
6 LEDS 
7 LSUDS 

N/& P = 1-SO.000, N=lo 

Figure 13. Plot of error norm versus NIP''' for N = 10 and P ranging from 1 to 50,000 
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1 CDS 
2 UDS 
3 QUDS 
4 LDS 

4 5 LUDS 
/ 6 LEDS 

LSUDS 

N 

Figure 14. Plot of CPU seconds versus number of nodes for S(x) = - x 

9. DISCUSSION OF RESULTS 

Figure 2 clearly depicts the viscous boundary layer, where the solution, +(x), rapidly changes from 
(b(0) to +( 1). The curves for large Peclet numbers do not vary considerably within the first ( N  - 2) 
nodal points for P > 0. 

Figure 3 depicts an oscillatory behaviour of the CDS solution and indicates that the UDS 
overpredicts the nodal &values further downstream of the 70 per cent station. Inspection of the 
results reveals that the UDS is inaccurate even for moderate Peclet numbers, unless the grid is 
sufficiently fine; but that it does predict qualitatively realistic solutions, unlike the ‘wiggles’ of the 
CDS. The LDS and the LUDS solutions are not much of an improvement, the former being also 
oscillatory. In contrast, the LSUDS and the LEDS are seen to be in excellent agreement with the 
analytical solution, throughout the domain. 

Figures 4 and 5 correspond to the linear source cases, and indicate again that both the CDS and 
the LDS solutions are oscillatory in nature. The other comments relating to the case with zero 
source (Figure 3) are also valid, the UDS overpredicting 4 downstream, and the LSUDS and the 
LEDS solutions being very accurate over the whole domain. 

Figures 6 and 7 correspond to the quadratic source cases, and indicate that both the CDS and 
LDS are once again oscillatory. 

Figures 8 and 9 correspond to the large source cases, and clearly depict the unboundedness in the 
oscillatory nature of the CDS, whereas they indicate that LEDS predicts very good results. The 
LDS appears to predict oscillatory results within the last few nodal points. 

Inspection of Figures 3 to 9 reveals that, in general, all the test cases were well modelled by both 
the LEDS and the LSUDS with errors of max ( for all Peclet numbers. 
However, considerable errors are indicated when using the LEDS for very large source terms. The 
CDS performed well for mesh Peclet number less than 2, but was grossly in error for higher Peclet 
numbers, for both test case 1 (with zero source, Figure 3) and when the type of source, S(x), did not 
affect the outcome to a great extent (i.e. when the source and solution profiles are similar in shape, 

- 4tl/@N) less than 
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Figure 4). Inspection of Table IV reveals that wiggles are predicted by the CDS, whereas the UDS, 
although always stable, is in considerable error at all flow rates and practical mesh sizes. The results 
indicate that the UDS always overestimated the solution by at least 15 per cent, even for relatively 
fine grids, whereas the QUDS underpredicted the solution by only a few per cent. The LEDS 
appeared to overestimate the solution for the problems with large source terms by around 5 per 
cent at the extreme, whereas the LSUDS was within 0.01 per cent for all test cases considered, 
including those with large source terms. This is expected since the exact solution is a combination 
of an exponential and a cubic, in which case the LSUDS is ‘exact’, except for inaccuracies arising 
near boundaries. Also indicated in Table IV are the wiggles in the solutions obtained by the LDS 
and QUDS, owing to the ill-conditioned influence coefficients. 

It is clear from the above Figures and Tables IV that the LSUDS and the LEDS give by far the 
most accurate solutions, as expected. However, before any judgement can be formulated about the 
relative performance of the schemes, it is important to compare the profiles of the maximum errors 
both as functions of the mesh size and of the Peclet number, and with respect to the computational 
requirements for the schemes. After all, if a scheme is convergent, a more accurate solution may 
always be obtained by mesh refinement, until round-off error dominate truncation error. 
Therefore, it is the authors opinion that accuracy should be compared on the basis of relative CPU 
and storage costs together with convenience of programming effort. This information is provided 
by Figures 10-14. 

Figure 10 presents the behaviour of the maximum error with increasing Peclet number (from 
P = loo to lo5) for a constant grid size (Ax = 0.1). The profiles shapes for the UDS and LUDS are 
similar and those for the LDS and QUDS are also similar. The CDS crror profile diverges as the 
Peclet number increases. The LEDS and LSUDS profiles are not depicted in Figure 10 as they lie 
close to the P-axis. 

Figure 1 1  shows that there exists a critical region of the mesh size, over which the UDS error is 
maximum (being from N = I5 to N = 40 for this particular case). Outside this region the maximum 
error does not increase with decrease in mesh size. I t  is interesting to observe that for the UDS the 
crror profile flattens out very slowly. The number of nodal points, N ,  required to obtain a given 
accuracy by the UDS is nearly three times that of the LDS (e.g. LDS requires N = 30 and UDS 
requires N = 80 for this particular case). 

for constant P and constant 
N, respectively; the range of N for the former being between 10 and 100 and the range of P, for the 
latter, being between 10’ and 5 x lo4. The error profiles for increasing P indicate that the 
maximum errors tend to zero for both UDS and LUDS, but that they tend towards a limiting 
value, considerably greater than zero, for the QUDS and LDS (for this particular case). The profiles 
for the LEDS and LSUDS are not presented, as they lie close to the N/P’’2-axis in Figure 13. 

Figure 14 shows crude computational requirements in CPU seconds, on a PRIME series 750 
computer. It is seen that the time requirements for the LDS are about three times those for the 
UDS. This is true in general, so that for a given accuracy (up to a limit) the UDS is marginally 
cheaper than the LDS, considering that the former requires less than three times the number of 
nodes required by the latter for this accuracy. The presented computcr time requirements are for 
obtaining a given accuracy and should not be interpreted as machine accurate because of the 
limitations in the time print-out. What is established however is that the upwind- and central- 
difference schemes are the least expensive, as expected, closely followed, as may not be expected, by 
the locally exact scheme. It should be mentioned in this contcxt that the calculation of the 
exponentials involved in the latter was reprogrammed by the authors and appeared to be more 
efficient than the standard PRIME-library calculations. In practice, and to avoid overflow, 
asymptotic formulae avoiding calculation of exponentials completely would be used for large 

Figures 12 and 13 depict the maximum error profiles versus 
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exponents in all schemes The LSUDS and the QUDS are both about 2.0 times more expensive than 
the above three schemes, for the same number of nodal points, and the LDS and LUDS are about 
3.0 times more expensive. 

10. CONCLUSIONS 

A comparative study in terms of accuracy and computer requirements has been presented for seven 
numerical schemes, which were applied to a series of simple 1D convection-diffusion problems 
including linear and non-linear sources. One-dimensionality was imposed in order to eliminate the 
additional complexity of the multi-dimensional ‘false-diffusion’. 

The main findings may be summarized as follows: 
1. The central-difference and Leonard’s LD and LUD schemes proved the most unstable. The 

first two were also inaccurate although they are both second order. This indicates that it is not only 
the order of the scheme that dictates the accuracy of the solution in convection/diffusion problems, 
but also the particular formulation which must account for the asymmetric nature of convection. 

2. The central and upwind schemes lead to inaccurate solutions for moderate and high Peclet 
numbers, and for moderate grids. The upwind scheme presents a flat error profile versus number of 
nodes, for moderately fine grids. There is therefore a danger that moderate grid refinement may 
indicate as grid-independent a solution which is still in considerable error. Indeed, in order to 
obtain with the UDS the same accuracy as with the LSUDS the number of nodes had to be 
increased to 200. Therefore, for grid-independency studies with the UDS a many-fold increase in 
the number of nodes may be necessary. 

3. For moderate grids, the higher order schemes were, in general, more accurate (when 
convergent!) than the first order upwind scheme. An exception was the CDS for Pe > 2 when it 
became highly inaccurate. However, all the schemes except the central and locally exact schemes 
were 2.0 to 3.0 times more expensive than the UDS in computational terms. 

4. The LSUDS was, as expected, the most accurate scheme, very closely followed by the LEDS 
and the QUDS. However, the latter was sometimes oscillatory. The LEDS was both accurate and 
economical. Furthermore the influence coefficients (i.e. g, and gp; see Appendix 11) of the LEDS 
can be calculated and tabulated to improve even further the computational requirements. 

5. The schemes considered here fall into three categories, in order of increasing demand in terms 
of computational requirements, as follows: 

(a) Central-difference scheme 
Upwind-difference scheme 
Locally exact difference scheme 

(b) Leonard super upwind difference scheme 
Quadratic upstream difference scheme 

(c) Leonard upwind difference scheme 
Leonard difference scheme. 

The CPU times required are compared with the UDS. For the one-dimensional cases considered, 
the LDS was found to be approximately three times as expensive as the UDS, whereas the accuracy 
was within 10 per cent, unlike the UDS, which was at  least 20 per cent in error. The LSUDS 
requiredjust about twice the computer time compared to the UDS, but the LSUDS was within 0.01 
per cent in error. Finally the LEDS required between 2 and 3 per cent less CPU time for a 
maximum error of around 5 per cent (because it required much fewer iterations for a given 
accuracy), which means that the LEDS could prove a very efficient scheme. The combination of the 
findings of this study on accuracy vis-a-vis computer requirements leads to the following general 
conclusions: 
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(i) When a 5 per cent average error of the numerical solution at the grid points is acceptable, one 
might as well use the UDS with fine grids because it is unconditionally stable and convenient in 
programming effort. The total CPU requirements will be the same as for the most accurate 
schemes with coarser grids. 

(ii) Should a very accurate solution be required then one should abandon the UDS because of its 
flat error response to further grid refinement, and choose either the QUDS or LSUDS or 
LEDS. Of those three the first may be unstable, the second is the most accurate and the third 
the cheapest. The above conclusions are based on the detailed study of a series of linear 1 D 
problems with linear and non-linear sources, only. Therefore, the general applicability of these 
conclusions is by no means established as yet. It is suggested that the LEDS may have not 
received the attention it deserves from the computational fluid-dynamics community. and that 
further research in evaluating and developing it (particularly in 2D and 3D cases, where its 
application along streamlines would also eliminate multi-dimensional false diffusion) may 
prove fruitful. Work is currently in progress on 2D problems and will be reported elsewhere. 
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NOMENCLATURE 

quadratic-profile source coefficients 
modified coefficients in source expressions 
general coefficients for finite-difference equation (ap coefficient at point P, anb coefficients 
at neighbouring points of point P). 
cell-faces of control volume 
functions defined in Appendix 
bulk ‘source’ term 
non-dimensional velocity component in the i-direction 
co-ordinate distance 
control-volume face area 
convection term = pu, 
diffusion term = r/Ax 
modified source term 
nodal point (centres of control volumes) 
fluxes at East and West faces of control volume 
function defined in Appendix 
number of grid nodes 
Peclet number = pu/T 
mesh Peclet number = Ci/Di 
integrated source term 
source term 
average source within control volume 
velocity at ith-control-volume face 
modified multiplier 
maximum of c ,  and c2 
mesh size in x-direction. 
functions defined in Appendix 
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5 variable defined in Appendix 
Ti 
A 
r non-dimensional diffusion coefficient 
P density 
4 non-dimensional dependent variable 
Q, 

diffusion coefficient at ith control volume face 
Leonard super upwind difference scheme weighting factor 

analytical solution for dependent variable # 

APPENDIX 1 

Integration of equation (la) twice gives; 

assuming that F and u are constant between two adjacent ‘nodal’ values. Then by evaluating 4 in 
(1 5) for the west face, between i and i - 1, and eliminating the constant of integration C,, we get: 

and similarly J ,  has the form 

e (18) J 
Ue(#i - 1 - #i) ~ X P  (ue/reAx) 

(1 - exp (UeIreAx) 

Equations ( I  7) and (1 8) can be written in a simpler form by introducing two new functions; these 
being 

4 
exp(4) - 1 

&(4) = 

and 

J , -  Jw=S* (21) 
Note that, as we are interested in the representations of the convection term only, one could use the 
second order finite difference representation for the second derivative, and the exponential 
representation for the convection term, i.e. equation (10). 
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APPENDIX I1 

Consider equation (94  together with equation (4) which gives the LSUDS; for u > 0 and P = u/T. 

P 
{A(24i+ 1 + 34i - 64:- 1 + 4 i - 2 )  + (1 - A)(114i - 184,- 1 + 9 6 - 2  - 24i-3) 

together with 

Substituting 
exp(Pxi) - 1 ’= exp(P)- 1 

in (22) and simplifying we have 

(24) 
6 - (6 + 1 tP,)exp( - P,) + 7P,exp( - 2P,) - 2P,exp( - 3P,) - p 

2P,( 1 - exp ( - P,))3 
A = -  

where 

(25) 
Ax4 Ax4 

2 2 
p=- exp ( - P,) + 2P,Ax4 exp ( - P,) - 3P, ~ exp ( - P,) 

which, when neglected, is the error introduced in the numerical LSUDS; even then p 6 1, so it 
would be wise to neglect such terms as the scheme is already rather involved. Similar expressions 
for A and p can be obtained for u < 0. 

Modifications at the boundary need the introduction of two further weighting parameters, y and 
p. Once again consider the case u > 0 and use the finite-difference representation, for i = 1, 

(26) 
P 1 
2h --kh - do + ~ ~ ( 4 ~  - W2 + 34, - rho)) - z ( 4 0  - 24, + 4 2 )  = &(4J 

which when substituted by equation (23), yields 

P =  (27) 
~ X P  ( - Pe)((1- ~ X P  (Pel) - Pe(1+ ~ X P  ( - Pe))/2 

(Pe(1- ~ X P  ( - Pe))2/2) 
Similarly at the ‘nodal’ point i = 2, we use an expression of the form of equation (26), which yields 

One can obtain similar expressions for the case u < 0. 
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